Gestational Age at Birth and Brain White Matter Development in Term-Born Infants and Children.

نویسندگان

  • X Ou
  • C M Glasier
  • R H Ramakrishnaiah
  • A Kanfi
  • A C Rowell
  • R T Pivik
  • A Andres
  • M A Cleves
  • T M Badger
چکیده

BACKGROUND AND PURPOSE Studies on infants and children born preterm have shown that adequate gestational length is critical for brain white matter development. Less is known regarding how variations in gestational age at birth in term infants and children affect white matter development, which was evaluated in this study. MATERIALS AND METHODS Using DTI tract-based spatial statistics methods, we evaluated white matter microstructures in 2 groups of term-born (≥37 weeks of gestation) healthy subjects: 2-week-old infants (n = 44) and 8-year-old children (n = 63). DTI parameters including fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity were calculated by voxelwise and ROI methods and were correlated with gestational age at birth, with potential confounding factors such as postnatal age and sex controlled. RESULTS Fractional anisotropy values, which are markers for white matter microstructural integrity, positively correlated (P < .05, corrected) with gestational age at birth in most major white matter tracts/regions for the term infants. Mean diffusivity values, which are measures of water diffusivities in the brain, and axial and radial diffusivity values, which are markers for axonal growth and myelination, respectively, negatively correlated (P < .05, corrected) with gestational age at birth in all major white matter tracts/regions excluding the body and splenium of the corpus callosum for the term infants. No significant correlations with gestational age were observed for any tracts/regions for the term-born 8-year-old children. CONCLUSIONS Our results indicate that longer gestation during the normal term period is associated with significantly greater infant white matter development (as reflected by higher fractional anisotropy and lower mean diffusivity, axial diffusivity, and radial diffusivity values); however, similar associations were not observable in later childhood.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gestational Age and Neonatal Brain Microstructure in Term Born Infants: A Birth Cohort Study

OBJECTIVE Understanding healthy brain development in utero is crucial in order to detect abnormal developmental trajectories due to developmental disorders. However, in most studies neuroimaging was done after a significant postnatal period, and in those studies that performed neuroimaging on fetuses, the quality of data has been affected due to complications of scanning during pregnancy. To un...

متن کامل

Gestational age at birth influences brain white matter development

Introduction: In vivo MRI and postmortem studies have demonstrated that there is substantial increase in myelinated cerebral white matter (WM) volume after 36 weeks of gestational age (GA) [1]. At 29 weeks there is minimal myelinated WM and the process is relatively slow until the 36 week. After the 36 week, a dramatic increase is seen in myelination of WM [1]. Therefore, this is a period when ...

متن کامل

Mapping the critical gestational age at birth that alters brain development in preterm-born infants using multi-modal MRI

Preterm birth adversely affects postnatal brain development. In order to investigate the critical gestational age at birth (GAB) that alters the developmental trajectory of gray and white matter structures in the brain, we investigated diffusion tensor and quantitative T2 mapping data in 43 term-born and 43 preterm-born infants. A novel multivariate linear model-the change point model, was appl...

متن کامل

Assessment of Structural Connectivity in the Preterm Brain at Term Equivalent Age Using Diffusion MRI and T2 Relaxometry: A Network-Based Analysis

Preterm birth is associated with a high prevalence of adverse neurodevelopmental outcome. Non-invasive techniques which can probe the neural correlates underpinning these deficits are required. This can be achieved by measuring the structural network of connections within the preterm infant's brain using diffusion MRI and tractography. We used diffusion MRI and T2 relaxometry to identify connec...

متن کامل

Probabilistic diffusion tractography of the optic radiations and visual function in preterm infants at term equivalent age.

Children born prematurely have a high incidence of visual disorders which cannot always be explained by focal retinal or brain lesions. The aim of this study was to test the hypothesis that visual function in preterm infants is related to the microstructural development of white matter in the optic radiations. We used diffusion tensor imaging (DTI) with probabilistic diffusion tractography to d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • AJNR. American journal of neuroradiology

دوره 38 12  شماره 

صفحات  -

تاریخ انتشار 2017